
Заочный физико-математический лицей «Авангард»

Е. Н. Филатов

АЛГЕБРА

10

Экспериментальный учебник Часть 2

MOCKBA - 2019

Филатов Е. Н. Математика-10. Часть 2. Экспериментальный учебник. – М.: ЗФМЛ «Авангард», 2019. – 368 с.

Учебник предназначен для углубленного изучения математики в 10-м классе. Главная цель учебника — научить учеников самостоятельно решать задачи, поэтому большое количество задач предлагается для самостоятельного решения. Все задачи условно разбиты на пять категорий сложности. К большинству задач приведены «подсказки» — краткие рекомендации к их решению и ответы.

€ Е.Н. Филатов, 2019

© Заочный физико-математический лицей «Авангард», 2019

Макет подготовлен Е.Н. Кочубей

Подписано в печать 01.02.2019. Формат 60×84/16.
Объем 23,0 п.л. Печать офсетная. Тираж 50 экз.
Автономная некоммерческая организация
"Заочный физико-математический лицей "Авангард"
(АНО ЗФМЛ "Авангард"). 115446, Москва, Коломенский проезд, 16

СОДЕРЖАНИЕ

УРАВНЕНИЯ И СИСТЕМЫ УРАВНЕНИИ	
§ 9. Дробные уравнения	(
§ 10. Уравнения со знаком модуля	24
§ 11. Уравнения высших степеней	4:
§ 12. Системы линейных уравнений	64
§ 13. Системы нелинейных уравнений	80
§ 14. Степень с рациональным показателем	11
§ 15. Иррациональные уравнения	139
НЕРАВЕНСТВА	
§ 16. Метод интервалов	16
§ 17. Системы линейных неравенств	19
§ 18. Системы рациональных неравенств	220
§ 19. Неравенства, содержащие знак модуля	23
§ 20. Задачи на составление неравенств	
§ 21. Квадратный трёхчлен и неравенства	26
§ 22. Неравенства на плоскости	28
ПОДСКАЗКИ	30
ОТВЕТЫ	33

УРАВНЕНИЯ И СИСТЕМЫ УРАВНЕНИЙ

§ 9. Дробные уравнения

К дробным уравнениям относятся уравнения, в которых неизвестная величина содержится в числителе или знаменателе дроби. Например:

$$\frac{x+1}{3} + \frac{x}{2} = 1\frac{1}{2}, \quad \frac{3}{x} + \frac{2}{x+1} = 7, \quad \frac{1}{x^2} + \frac{1}{x(x+1)} = \frac{1}{x}$$
 H Т.Д.

В знаменателях - только числа

Задача 9.1. Решите уравнение $\frac{x^2 + x}{3} - \frac{x - 2}{2} = 2$.

Решение. Попробусм «одним махом» избавиться от знаменателей. Для этого просто умножим обе части данного уравнения на произведение энаменателей, т. с. на 2·3 ≈ 6, получим:

$$\frac{(x^2+x)\cdot 6}{3} - \frac{(x-2)\cdot 6}{2} = 2\cdot 6 \to$$

$$2(x^2+x) - 3(x-2) = 12 \to 2x^2 - x - 6 = 0.$$

$$D = 1^2 + 4\cdot 2\cdot 6 = 25, \ \sqrt{D} = \sqrt{25} = 5,$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{1 \pm 5}{2\cdot 2}, \ x_1 = \frac{1-5}{4} = -1, \ x_2 = \frac{1+5}{4} = 1,5.$$

Omaem: x = -1, x = 1,5 или $x ∈ {1; 1,5}$.

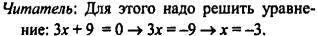
(В дальнейшем мы будем использовать обе формы записи корней уравнения.)

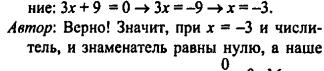
СТОП! Решите самостоятельно.

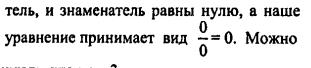
Б1. Решите уравнение $a^2 - 3a - 1 - \frac{2a^2 + 3a - 5}{2} = 1,5$.

B1. Решите уравнение
$$\frac{x^2 + 3x}{2} + \frac{x - 3x^2}{8} = 2x$$
,

В2. Решите уравнение $\frac{x^2-4}{8} - \frac{2x+3}{5} = 1$.


Г1. Алгебраическое выражение $\frac{a+1}{2}-3b$ принимает значение $3\frac{1}{2}$ при b=-0,5 и при некотором значении a. Чему равно значение того же выражения при том же значении a и при $b=\frac{5}{12}$?


Уравнение типа «дробь равна нулю»


Задача 9.2. Решите уравнение $\frac{x^2-2x-15}{3x+9}=0$.

Решение. Дробь равна нулю в том и только в том случае, когда числитель равен 0, а знаменатель отличен от нуля. Приравнивая числитель дроби к 0, получим уравнение: $x^2 - 2x - 15 = 0$. Найдём его корни: $x_{1,2} = 1 \pm \sqrt{1+15} = 1 \pm 4$, $x_1 = -3$, $x_2 = 5$.

Автор: Итак, числитель равен нулю, если x = -3 или x = 5. А при каких x равен нулю знаменатель?

ли утверждать, что x = -3 – корень нашего уравнения?

Читатель: Нет! Ведь выражение $\frac{0}{0}$, как мы знаем, не имеет смысла!

Автор: Правильно. Следовательно, наше уравнение имеет единственный корень x = 5. При желании это можно проверить:

$$\frac{x^2 - 2x - 15}{3x + 9} = \frac{5^2 - 2 \cdot 5 - 15}{3 \cdot 5 + 9} = \frac{25 - 10 - 15}{24} = \frac{0}{24} = 0.$$

Omeem: x = 5.

Заметим, что значение x = -3 в этом уравнении ещё называют *посторонним* корнем.

Читатель: А почему посторонним?

Автор: Потому что x = -3 – это корень уравнения $x^2 - 2x - 15 = 0$, т.е. это корень, но не исходного уравнения. Получается, что этот корень как бы пришёл к нам со стороны, поэтому его и назвали посторонним.

СТОП! Решите самостоятельно.

Б2. Решите уравнение:

a)
$$\frac{x^2 - 2x}{3x + 6} = 0$$
; 6) $\frac{x^2 - 1}{4x^2 - x - 3} = 0$; B) $\frac{x^2 + x}{x + 1} = 0$; r) $\frac{x^2 - 3x - 18}{x + 3} = 0$.

ВЗ. Найдите корни уравнения:

a)
$$\frac{x^2-4}{(x^2-3x+2)(x^2-2x-3)}=0$$
; 6) $\frac{x^2-7x+6}{x^3-2x^2+1}=0$;

B)
$$\frac{x^2 + 2x + 1}{(x^2 + 1)(x^2 - 1)} = 0$$
; r) $\frac{2x^2 - 2}{(x^2 - 2x + 2)^2} = 0$.

Дробь равна дроби, а их знаменатели равны

Задача 9.3. Решите уравнение $\frac{x^2}{x+2} = \frac{4}{x+2}$.

Решение. Сначала заметим, что знаменатель дроби не может быть равен нулю: $x + 2 \neq 0 \rightarrow x \neq -2$, т.е. x может принимать любое значение, кроме x = -2. Это можно записать так: $x \in (-\infty, -2) \cup (-2, +\infty)$. Данный числовой промежуток назовём областью допустимых значений (ОДЗ) неизвестной величины.

Заметим также, что у наших дробей одинаковые знаменатели. А две дроби, у которых знаменатели равны, будут равны только в том случае, если равны их числители: $x^2 = 4 \rightarrow x_1 = 2$, $x_2 = -2$. Корень x = 2 нам подходит, а x = -2 – нет, так как он не входит в нашу ОДЗ (потому что при x = -2 знаменатели дробей обращаются в нуль).

Читатель: Получается, x = -2 -посторонний корень?

Автор: Совершенно верно. А наше уравнение имеет только один корень x = 2.

Omeem: x = 2.

СТОП! Решите самостоятельно.

Решите уравнение:

E3. a)
$$\frac{x^2}{3-x} = \frac{2x}{3-x}$$
; 6) $\frac{x^2}{x-1} = \frac{x}{x-1}$; B) $\frac{x^2}{x+3} = \frac{x}{x+3}$.

B4. a)
$$\frac{6}{x+1} = \frac{x^2 - 5x}{x+1}$$
; 6) $\frac{x^2 - 6}{x-4} = \frac{x}{x-4}$;

B)
$$\frac{1-x^2}{5-x} = \frac{-24}{5-x}$$
; r) $\frac{3x^2-x}{1-x} = \frac{2}{1-x}$.

Используем свойство пропорций

Задача 9.4. Решите уравнение $\frac{x}{x+2} = \frac{x+1}{5x+1}$.

Решение. Это уравнение можно решить, используя основное свойство пропорции: произведение крайних членов равно произведению средних членов. Отсюда

$$x(5x+1) = (x+2)(x+1).$$

$$5x^{2} + x = x^{2} + 3x + 2,$$

$$4x^{2} - 2x - 2 = 0,$$

$$2x^{2} - x - 1 = 0,$$

$$x_{1} = -\frac{1}{2}, \quad x_{2} = 1.$$

Читатель: А нет ли среди найденных корней посторонних? Автор: Давайте определим ОДЗ: $x + 2 \neq 0 \rightarrow x \neq -2$ и $5x + 1 \neq 0$ $\rightarrow x \neq -\frac{1}{5}$. Как видите, ОДЗ такова, что «не запрещаются»

значения
$$x_1 = -\frac{1}{2}, \quad x_2 = 1.$$

Ответ:
$$x_1 = -\frac{1}{2}, \quad x_2 = 1$$
 или $x \in \left\{-\frac{1}{2}; 1\right\}.$

СТОП! Решите самостоятельно.

Решите уравнение:

64. a)
$$\frac{4}{x+7} = \frac{2}{5}$$
; 6) $\frac{y-5}{y+5} = \frac{1}{3}$; B) $\frac{15}{8-z} - \frac{1}{z} = 0$;

r)
$$\frac{3}{x-4} = \frac{4}{x-3}$$
; π) $\frac{y+1}{y-1} = \frac{2}{y^2-y}$.

B5. a)
$$\frac{4x+1}{x-3} = \frac{3x-8}{x+1}$$
; 6) $\frac{x-2}{x+2} = \frac{x+3}{x-4}$;
B) $\frac{2x-1}{x+7} = \frac{3x+4}{x-1}$; r) $\frac{3}{x^2+2} = \frac{1}{x}$.

Уравнения, которые легко приводят к виду (дробь 1) = (дробь 2)

Задача 9.5. Решите уравнение $6 = \frac{5}{z} - z$.

Решение. ОДЗ:
$$z \neq 0$$
. $6 = \frac{5}{z} - z \rightarrow 6 + z = \frac{5}{z} \rightarrow \frac{6+z}{1} = \frac{5}{z}$.

Используем свойство пропорции:

$$(6+z) z = 1.5 \rightarrow z^2 + 6z - 5 = 0, \quad z_{1,2} = -3 \pm \sqrt{9+5} = -3 \pm \sqrt{14}.$$

Видим, что $z \neq 0$, значит, $z_1 = -3 - \sqrt{14}$, $z_2 = -3 + \sqrt{14}$ – корни нашего уравнения.

Omeem: $z \in \{-3 - \sqrt{14}; -3 + \sqrt{14}\}$.

СТОП! Решите самостоятельно.

Б5. Решите уравнение:

a)
$$y = \frac{2y}{3y-1}$$
; 6) $\frac{2}{2z+5} = z+1$; B) $\frac{5x-2}{x} = 3x$.

B6. Решите уравнение: a)
$$\frac{1}{x-x^{-1}}=1$$
; 6) $\frac{1}{x+x^{-1}}=1$.

Уравнения вида (дробь 1) ± (дробь 2) = (число)

Задача 9.6. Решите уравнение
$$\frac{5x}{3x+1} - \frac{1}{9x+3} = 1\frac{1}{6}$$
.

Решение. Заметим, что 9x + 3 = 3(3x + 1). Значит, для того, чтобы привести дроби к общему знаменателю, достаточно умножить числитель и знаменатель первой дроби на 3:

$$\frac{3.5x}{3(3x+1)} - \frac{1}{3(3x+1)} = \frac{7}{6} \to \frac{15x-1}{3(3x+1)} = \frac{7}{6}$$

Теперь определим ОДЗ: $3x + 1 \neq 0 \rightarrow x \neq \frac{1}{3}$. Дальше восполь-

зуемся свойством пропорции:

$$(15x-1)\cdot 6 = 7\cdot 3(3x+1) \rightarrow 90x - 6 = 63x + 21 \rightarrow 27x = 27 \rightarrow x = 1.$$

Нетрудно видеть, что этот корень входит в ОДЗ, так как $1 \neq \frac{1}{3}$.

Ответ: x = 1.

СТОП! Решите самостоятельно.

Б6. Решите уравнение:

a)
$$\frac{2}{y+1} - \frac{3}{2(y+1)} = 5$$
; 6) $\frac{1}{3(z-2)} = \frac{3}{z-2} + 1$;

B)
$$\frac{x+7}{3x-6} - \frac{2x-3}{x-2} = \frac{1}{3}$$
; r) $\frac{3z-1}{4z+12} + \frac{z+2}{z+3} = \frac{1}{4}$.

Задача 9.7. Решите уравнение $\frac{3a+9}{3a-1} + \frac{2a+13}{2a+5} = 2$.

Решение. Приведём дроби к общему знаменателю и выполним сложение:

$$\frac{3a+9}{3a-1} + \frac{2a+13}{2a+5} = 2 \to \frac{(3a+9)(2a+5)}{(3a-1)(2a+5)} + \frac{(2a+13)(3a-1)}{(3a-1)(2a+5)} = 2 \to \frac{(3a+9)(2a+5) + (2a+13)(3a-1)}{(3a-1)(2a+5)} = 2 \to \frac{(6a^2+18a+15a+45) + (6a^2+39a-2a-13)}{6a^2+15a-2a-5} = 2 \to \frac{12a^2+70a-32}{6a^2+13a-5} = \frac{2}{1}.$$

Далее воспользуемся свойством пропорции:

$$1 \cdot (12a^2 + 70a - 32) = 2 \cdot (6a^2 + 13a - 5) \rightarrow$$

9

$$12a^{2} + 70a - 32 = 12a^{2} + 26a - 10 \rightarrow 44a = 22 \rightarrow a = \frac{22}{44} = \frac{1}{2}.$$

Найдём ОДЗ: $3a-1 \neq 0 \rightarrow a \neq \frac{1}{3}$, $2a+5 \neq 0 \rightarrow a \neq -\frac{5}{2}$.

Видим, что $a = \frac{1}{2}$ — это «разрешённое» значение корня, т.е. он не является посторонним.

Ombem: $a = \frac{1}{2}$ или $a \in \left\{\frac{1}{2}\right\}$.

СТОП! Решите самостоятельно.

B7. Решите уравнение: a)
$$\frac{x+1}{x-5} + \frac{2x+2.5}{x+2} = \frac{1}{2}$$
;

6)
$$\frac{3x-9}{x-1} + \frac{x+6}{x+1} = 3$$
; B) $\frac{3x+1}{x+2} - \frac{x-1}{x-2} = 1$; r) $\frac{2x-2}{x+3} + \frac{x+3}{x-3} = 5$.

Уравнения вида
$$\frac{a}{(x\pm\alpha)}\pm\frac{b}{(x\pm\beta)}=\frac{c}{(x\pm\alpha)(x\pm\beta)}$$

Задача 9.8. Решите уравнение $\frac{x}{x-4} - \frac{2x}{x-3} = \frac{6}{(x-4)(x-3)}$.

Решение. Сначала найдём ОДЗ:

$$x-4\neq 0 \rightarrow x\neq 4$$
, $x-3\neq 0 \rightarrow x\neq 3$.

Теперь избавимся от дробей, умножив обе части уравнения на произведение (x-4)(x-3), получим:

$$(x-4)(x-3)\left(\frac{x}{x-4} - \frac{2x}{x-3}\right) = (x-4)(x-3)\left(\frac{6}{(x-4)(x-3)}\right) \to (x-3)\cdot x - (x-4)\cdot 2x = 6 \to x^2 - 3x - 2x^2 + 8x = 6 \to -x^2 + 5x - 6 = 0 \to x^2 - 5x + 6 = 0,$$

$$D = 5^2 - 4 \cdot 6 = 1, \quad x_{1,2} = \frac{5\pm 1}{2}, \quad x_1 = 2, x_2 = 3.$$

Как видим, x = 3 — посторонний корень, так как это значение не входит в ОДЗ. Значит, корень единственный x = 2.

10

Ombem: $x \in \{2\}$.

B8. Решите уравнение: a)
$$\frac{10}{(x-5)(x+1)} + \frac{x}{x+1} = \frac{3}{x-5}$$
;

6)
$$\frac{2x-7}{x-4} - \frac{x+2}{x+1} = \frac{x+6}{(x-4)(x+1)}$$
; B) $\frac{2x+5}{x(x+1)} - \frac{2}{x} - \frac{3x}{x+1} = 0$.

Используем формулу сокращённого умножения $a^2 - b^2 = (a - b)(a + b)$

Задача 9.9. Решите уравнение:
$$\frac{7}{6x+30} + \frac{3}{4x-20} = \frac{15}{2x^2-50}$$
.

Решение. Сначала разложим на множители каждый знаменатель: $6x + 30 = 6 \cdot (x + 5)$; $4x - 20 = 4 \cdot (x - 5)$; $2x^2 - 50 = 2(x^2 - 25) = 2(x - 5)(x + 5)$. Теперь наше уравнение будет выглядеть так:

$$\frac{7}{6(x+5)} + \frac{3}{4(x-5)} = \frac{15}{2(x-5)(x+5)}.$$

Читатель: Дальше всё понятно! Надо умножить обе части уравнения на такое выражение, чтобы все дроби «исчезли»!

Автор: Верно! И какое это выражение?

Читатель: Например: 12(x+5)(x-5), ведь 12 : 6, 12 : 4, 12 : 2. Автор: Да, 12 = НОК (4, 6, 12). Только не забудьте указать ОДЗ. Читатель: Это просто: $x+5 \neq 0 \rightarrow x \neq -5$, $x-5 \neq 0 \rightarrow x \neq 5$. Те-

перь умножаем:

$$12(x+5)(x-5) \left[\frac{7}{6(x+5)} + \frac{3}{4(x-5)} \right] =$$

$$= 12(x+5)(x-5) \frac{15}{2(x-5)(x+5)},$$

$$2 \cdot 7(x-5) + 3 \cdot 3(x+5) = 6 \cdot 15 \rightarrow$$

$$14x - 70 + 9x + 45 = 90 \rightarrow 23x = 115 \rightarrow x = 115 : 23$$

$$\rightarrow x = 5.$$

Но это значение не входит в ОДЗ!